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Exercise 410 

Determination of Young's modulus by the beam-bending method 
 
Beam size measurements 
 

Beam type 
lenght* width thickness C  

l,   [m] ia ,   [mm] ih ,   [mm] [m-1] 

     

     

     

* Note: The bar length is calculated between the support points. 

 

Measurements of the depression of a beam 

Beam 

type 

Load 

weight 
Micrometer readings, 

[mm], under load 

Depression 

of a beam 

iY  
i iQ Y  

Mean, 

k Q Y  

Young’s 

modulus, E 

Theoretical 

Young’s 

modulus, E 

[g] increasing decreasing [mm] [N/m] [N/m] [GPa] [GPa] 

 0   ----- -----    

         

         

         

         

 0   ----- -----    
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Exercise 410. Determination of Young's modulus by the beam-bending 

method 

Purpose 

The aim of this exercise is to determine the Young's modulus of metals and wood by the flat beam  

bending method by measuring the depression of a beam. 

Theory 

Hook’s law 

If we apply force to an immobilized elastic body, stresses will arise in this body, causing its 

deformation. The stress σ in a beam with a cross-section A, on which a force F acts (perpendicular 

or tangent to A) is equal to the ratio of the force to the cross-sectional area of the beam: 

  F A  (1) 

Stress resists the intermolecular forces inside the material. There are usually three types of stress: 

stretching (lengthening the body), compressive (shortening the body) and shear (deforming the 

shape of the body). In the latter case, the force acts tangent to the cross-sectional area. 

 

 
 

 

The change in beam length due to tension or compression is proportional to its length. If, for 

example, beam in lenght l, we stretch by force F


, it increases its lenght by Δl, rys. 1, then a 

measure of deformation ε is the relative change in length: 

  l l . (2) 

When after removing the force F


 the body returns to its dimensions, this deformation is called 

elastic. With small deformations, ε is proportional to σ: 

  
1

E
. (3) 

E is modulus of elasticity (called Young’s modulus ) of a material. Young's modulus is numerically 

equal to the stress at which the relative change in beam length would be equal to one. Young's 

modulus is expressed, like stress or pressure, in pascals: 1 Pa = 1 N/m2. 

The linear relationship between stress and strain is known as the Hooke’s law. After substituting 

into (3) the formulas defining  ε  and σ, we get : 
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l
E

l

A
F 

1
. (4) 

Thus, Hooke's law states that when stretching or compressing, the change in length is proportional 

to the force acting. 

The easiest way to determine the Young's modulus is to measure the increment in length Δl of the 

rod in lenght l and cross-sectional area A, fixed at one end and stretched by force F. However, in the 

case of thicker beams, it is difficult to obtain measurable elongations due to the need to use very 

high forces. For this reason, we use complex deformations, which include bending a beam fixed on 

one side or supported on both ends. 

Bending of the beam 

Bending of the beam can be reduced to its simultaneous stretching and compression. There is a 

layer along the bent beam, called neutral surface, the length of which does not change when bent. 

Above this surface, the deformation forces take the tensile direction of the upper layers, below - the 

opposite direction and cause compression of the lower layers. 

 

 

 

 

These forces occur in pairs and create the bending moment M


 to the neutral line. 

 

The following relationship between the bending moment and the modulus of elasticity of the beam 

can be derived: 

M
E I

R
 . (5) 

In this formula R is the radius of curvature of the deflected beam (it is the radius of the circle whose 

fragment is the deflected beam), while I denotes the moment of inertia of the section. 

The moment of inertia of the cross-section is determined by the distribution of the elements of the 

cross-sectional area with respect to the neutral line. If by z we express the distance of the cross-

sectional area element dS from the neutral line, then I is defined by the formula: 

                                                                            2

S

I z dS   
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.  

Calculating this area integral for a rectangular section of width a and thickness h we obtain the 

following formula for the moment of inertia of the section: 

I
a h


 3

12
. (6) 

 

We consider the deflection of a beam of length l supported at both ends and loaded with a mass m in 

the center by a weight Q. Each support acts on the beam with a reaction force equal to 2Q , and the 

central part of the beam remains horizontal. We will consider the deflection of the beam in relation 

to the coordinate system whose origin is located in the middle of the beam. The moment of the 

reaction force acting on the end of the beam, calculated in relation to the point lying at the distance 

x from the center of the beam, is (with small deflections): 

2 2

Q l
M x

 
   

 
. 

The radius of curvature R of the deflected beam is given 

by the equation, the approximate form of which, in our 

case, is as follows: 

1 2

2R

d y

dx
 . 

After substituting the last two formulas in relation (5), we 

will obtain an equation whose solution determines the 

beam deflection line     y f x . 

If in the function  y f x  we substitute x the value of the coordinate at the fulcrum, x l 2 , we 

obtain the maximum value of the coordinate maxy y Y  . 

 

The value of the y coordinate in the place of support is called the depression of a beam Y. The 

formula for the depression of a deflected beam is as follows:  

3

48

Q
Y l

EI
 . 

Q

l/2 l/2

x

Q/2Q/2
y

x

y
s
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For a rectangular section, we get: 

            
3

34

Ql
Y

Eah
    (7) 

The formula for the depression of the beam shows that the deflection of the beam is inversely 

proportional to the moment of inertia of the section and if the beam has a 

rectangular section, then the depression is inversely proportional to the 

thickness of the beam h raised up to the third power. 

The above conclusions suggest that in order to construct strong, 

lightweight elements, most of the material should be located as far away 

from the neutral surface as possible. 

For example, an I-section resists better moments of bending forces acting perpendicular to its length 

than a beam with a square cross-section made of the same amount of material. 

Measurement of the depression of the beam Y for a given load Q allows to determine the Young's 

modulus of the material from which the bar is made. By transforming the formula (7) we get: 

3

34

l Q
E

ah Y
  . (8) 

REQUIRED EQUIPMENT  Flat metal and wooden beams 

 Two tripods with a set of clamps  Caliper 

 Crossbeam  Measuring tape 

 Dial micrometer sensor  A set of weights with a mass 10 g and 

50 g 

 Catetometer for setting the height of 

the supports supporting the bars 

 Stape and hanger for suspending the load 

 Performance of the task 

1. Preperation of the measuring system 

 We check whether the measuring 

system is prepared in accordance with 

the attached photo. 

 We choose two or three beams for 

measurements. The beams are metal 

(iron, brass) and wooden. 

2. Beam size measurements 

 We measure the distance l between 

the supports' centers with a millimeter 

measure. The result is a measure of 

the effective length of the bent beam. 

 We check the width a and thickness h 

of the selected bars with a caliper. 

The bars can have the following widths, in [mm]: 10; 15; 20 and thickness, in [mm]: 1,5; 

2,0;3,0;5,0. 

 We calculate the beam constant C:  
C

l

ah


3

34 . 
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3. Determination of the ratio Q Y  

 We weigh the weight hanger 𝑚𝑤, and check the mass of the attached weights. 

 The tested beam is placed on supports attached to the tripods. 

 Put a stapes on the middle of the rod and place it under the micrometric sensor so that its tip 

rests on the recess on the upper surface of the stapes. 

Note: Do not bend the rod to slide it under the sensor tip, only lift the sensor tip with the handle above the dial. 

 We read the indications of the micrometer  0y . This is a zero reading (for a beam loaded with a 

stapes only). 

Note: the micrometer gauge reading for the stapes bar should be approximately 5 mm when the stapes is on a 2 

mm thick bar. If necessary, notify the instructor of the need to adjust the height of the supports. 

 The first load   1Q  is suspended from the stapes (hanger and weights). The load value should 

be between 100 g and 150 g. We read the micrometer reading. 

Note: The stape may move when the bar is loaded, therefore it is necessary to check the position of the tip of the 

micrometer sensor in relation to the stape each time the load is changed. 

 The difference 1 1 0Y y y   gives first depression of the beam 1Y . 

 Measurements of depressions of the beam 0i iY y y   we carry out two more times, increasing 

the load each time by 100 g (or according to the teacher's instructions). 

 First, we determine the depressions of the beam with increasing and then decreasing loads. 

From the two results obtained for a given load value, we calculate the average value, which we 

take as the proper value of the depression of the beam. 

 We calculate the quotient for each load i iQ Y , 𝑖 = 1, 2, 3. 

 We calculate the average value Q Y . If we introduce the designation for a single measurement: 

i i ik Q Y  and for the mean value k Q Y , then we can express it as follows: 

1 2 3

3

k k k
k

 
 , (9) 

4. Calculating the Young’s modulus 

According to the formula (8), the product of the bar constant C and the value of k (the average ratio 

of Q to Y) is equal to the Young's modulus for a given bar with a rectangular cross-section: 

E C k  . (11) 

Error calculus 

Measurement error Δk, we calculate as the absolute maximum error between the mean value of k 

and each of the three measurements ik : 

max ; 1, 2, 3.ik k k i     

We determine the remaining errors of complex physical quantities using the logarithmic derivative 

method. 

   C

C

l

l

h

h

a

a
 









 3 . 

We assume: Δl = 4mm, Δa = 0,05mm, Δh = 0,05mm. 

.
k C

E E
k C

  
   

 
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We also calculate the relative percentage error of Young's modulus: %.100



E

E
Bp  

Conclusions: 

We compare the calculated values of Young's modulus with the physical table values. We calculate 

errors with respect to an array value. We compare these errors with the values from the error 

calculus. 


